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A B S T R A C T

Ageing is influenced by the intrinsic disposition delineating what is maximally possible and extrinsic factors

determining how that frame is individually exploited. Intrinsic and extrinsic ageing processes act on the

dermis, a post-mitotic skin compartment mainly consisting of extracellular matrix and fibroblasts. Dermal

fibroblasts are long-lived cells constantly undergoing damage accumulation and (mal-)adaptation, thus

constituting a powerful indicator system for human ageing. Here, we use the systematic of ubiquitous

hallmarks of ageing (Lopez-Otin et al., 2013, Cell 153) to categorise the available knowledge regarding

dermal fibroblast ageing. We discriminate processes inducible in culture from phenomena apparent in skin

biopsies or primary cells from old donors, coming to the following conclusions: (i) Fibroblasts aged in

culture exhibit most of the established, ubiquitous hallmarks of ageing. (ii) Not all of these hallmarks have

been detected or investigated in fibroblasts aged in situ (in the skin). (iii) Dermal fibroblasts aged in vitro and

in vivo exhibit additional features currently not considered ubiquitous hallmarks of ageing. (iv) The ageing

process of dermal fibroblasts in their physiological tissue environment has only been partially elucidated,

although these cells have been a preferred model of cell ageing in vitro for decades.

� 2014 Elsevier Ireland Ltd. All rights reserved.
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1. The crucial role of the dermal fibroblast in extrinsic skin
ageing

Ageing is a somatic process entailing the progressive loss of
maximal function, stress resistance, metabolic efficiency and
adaptive potential. Ageing is associated with various diseases and
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delimits health-span in the absence of disease. Many signalling
pathways, gene networks and organelle functions become altered
in the course of normal ageing and/or have an impact on ageing
trajectories upon genetic or pharmacological manipulation. Ageing
can thus be considered a syndrome, in which various chronic
molecular processes converge on a common, rather uniform set of
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phenotypic changes denominated frailty (Kirkwood and Melov,
2011). Frailty is a clinical state in which there is an increase in an
individual’s vulnerability for developing increased dependency
and/or mortality when exposed to a stressor. Frailty can occur as a
result of ageing or diseases or both and is increasingly perceived as
an important medical syndrome that should be diagnosed and
subjected to medical treatment and prevention (Clegg and Young,
2011; Morley et al., 2013; Ruiz et al., 2012).

Ageing of different cell types, tissues and organs is associated
with distinct patterns of altered gene expression and tissue
function (Glass et al., 2013; Harries et al., 2011; Rodwell et al.,
2004; Sundberg et al., 2011; Welle et al., 2003; Zahn et al., 2007,
2006), whereas isolated genetic defects in ageing-relevant path-
ways give rise to segmental, tissue-selective ageing phenotypes
(Kipling et al., 2004). For most tissues it remains, however, unclear,
which age-related alterations play a leading and causative role in
the ageing process, and which ones are just epiphenomena.

It is generally accepted that ageing has two principal
determinants: The intrinsic disposition (genetic make up, somatic
capacity and composition) delineating what is maximally possible,
and extrinsic factors (life style, nutrition, environmental influences)
determining how the pre-set frame of opportunity is exploited in
the course of the individual ageing trajectory. Extrinsic ageing is
thus closely related to the quality, with which life-supportive tasks
are adjusted to the environmental condition (Brink et al., 2009),
and inseparably linked to mechanisms of stress response and
adaptation. Insufficient adaptation and/or collateral maladapta-
tion due to trade-offs with other probiotic or species-protective
processes (e.g. fertility or tumour suppression) are thought to be
major principles of extrinsic ageing (Campisi, 2005; Kirkwood,
2005; Kirkwood and Melov, 2011; Martins et al., 2011).

Human skin is particularly suited for discriminating extrinsic
and intrinsic ageing processes, because the entire organ is
subjected to intrinsic ageing, whereas extrinsic ageing is restricted
to sites exposed to environmental factors such as sun light.
Moreover, intrinsic and extrinsic skin ageing processes appear to
involve different compartments of the organ. The upper compart-
ment, the epidermis, is a stratified squamous epithelium, which
provides the essential protective barrier. To maintain tissue
integrity it continuously regenerates and plays a major role also
in wound healing. This highly proliferative cell population has
established many defence mechanisms. Most notably, the epider-
mis is able to eliminate extrinsic macromolecular damage by
constant shedding of terminally differentiated keratinocytes, thus
precluding damage accumulation and rendering the tissue
compartment comparatively resistant to environmental stress.
Age-related thinning of the epidermis and the associated decline of
barrier function and wound healing capacity is ubiquitous and
reflects an intrinsic process. Such alterations are commonly related
to progressive dysfunction of stem cells. However, across an
average mouse’s life time, there was no measurable loss in the
physiologic functional capacity of epidermal stem cells (Stern and
Bickenbach, 2007) and their abundance, organisation, and
proliferation did not change notably (Giangreco et al., 2008),
prompting the notion that at least in mouse, epidermal stem cells
are resistant to ageing.

In contrast, the lower compartment of the skin, the dermis, is a
post-mitotic tissue relying on adaptation and damage repair for
homeostasis. It mainly consists of extracellular matrix (ECM),
which determines the structural and mechanical properties of the
skin. The dermal matrix is made and controlled by fibroblasts,
which scarcely proliferate and therefore are much less able to
remove extrinsic damage by cell shedding. Dermal fibroblasts thus
constitute a long-lived cell population undergoing continuous
damage accumulation and – adaptation, processes typically
associated with extrinsic ageing. In keeping with this notion,
most phenotypic changes in extrinsically aged skin such as wrinkle
formation are linked to dysfunctions of dermal fibroblasts and
corresponding remodelling of the dermal ECM (Boukamp, 2005;
Parrinello et al., 2005). These characteristics have made the dermal
fibroblast a preferred model for the study of extrinsic ageing
processes at the cellular level.

The major exogenous determinants of human skin ageing are
photo-oxidative stress (mostly due to sun light/UV radiation) and
the toxicity of polycyclic aromatic hydrocarbons (PAHs) contained
in cigarette smoke and industrial waste (Daniell, 1971; Grady and
Ernster, 1992; Krutmann et al., 2012; Schroeder et al., 2006).
Chronically degenerative processes promoted by these noxae
converge on the dermis and are associated with (mal-)adaptive
stress-responses of dermal fibroblast, which in concert with ECM
interactions and signals received from the epidermal compartment
are thought to bring about the majority of extrinsic skin ageing
phenomena (Boukamp, 2005; Parrinello et al., 2005). Here, we have
used and adapted the recently proposed systematic of ubiquitous
‘‘Hallmarks of Ageing’’ (Lopez-Otin et al., 2013) to review and
categorise what is known about these extrinsic ageing processes
manifesting in the dermal fibroblast.

2. The hallmarks of dermal fibroblast ageing

2.1. DNA damage, genome instability

2.1.1. Irreparable double-strand breaks (DSB) and enhanced

recombination

Human fibroblasts subjected to replicative or stress-induced
premature senescence in vitro (see Section 2.7) accumulate gH2AX
foci that contain DNA double strand break (DSB) repair complexes.
Similar foci were also observed in various tissues (not including
skin) of aged mice. It was suggested that these foci represent
unrepaired DSB (Sedelnikova et al., 2004) and reflect an age-
related increase in DNA damage and structural chromosomal
aberrations, which was also observed in human blood lymphocytes
from aged humans (Bolognesi et al., 1997; Fenech, 1998; Garm
et al., 2013; Mayer et al., 1989; Singh et al., 1990), though not yet
seen in hematopoietic stem cells (Wagner et al., 2009). The actual
number of DSBs that accumulate in senescent cells could be far
larger than deduced from gH2AX foci, because senescent
fibroblasts are subjected to enhanced hetero-chromatinisation
(Kreiling et al., 2011; Narita et al., 2003), and in heterochromatin
DSB are not labelled by gH2AX and much slower repaired (Cann
and Dellaire, 2011). There are indeed indications that the capacity
of DSB-repair decreases with age (see Section 2.1.4). Furthermore,
the observed gH2AX foci could reflect an increase in DNA segments
with chromatin alterations reinforcing senescence (DNA SCARS),
which consist of persistent gH2AX accumulation at PML bodies
thought to support altered expression of secreted proteins in
senescent fibroblasts (Rodier et al., 2011). Fibroblasts of patients
with the hereditary progeroid laminopathy Hutchinson-Gilford
Syndrome (HGPS) accumulate irreparable DSBs induced by
reactive oxygen species (ROS) (Richards et al., 2011), and a
characteristic of senescent fibroblasts is an abnormal (globulated)
nuclear structure caused by changes in lamin A localisation
(Shumaker et al., 2006). Such lamin A-dependent nuclear defects
are also found in foreskin fibroblasts from very old normal human
donors (Scaffidi and Misteli, 2006). Moreover, the genomes of
fibroblasts subjected to replicative senescence in vitro undergo
global epigenetic changes leading to the activation of transposable
elements, which may be another plausible cause for increases in
chromosome damage and recombination (De Cecco et al., 2013). In
summary, these findings suggest that aged fibroblasts could
acquire a hyper-recombinatorial state similar to the one associated
with chronological ageing in yeast (McMurray and Gottschling,
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2003), which is possibly triggered by an increase in DSB that are
induced by ROS or senescence-associated epigenetic transposon
activation, and inefficiently repaired due to lamin A dysfunction.
However, whether this is indeed a ubiquitous phenomenon
remains elusive (Figueroa et al., 2000).

2.1.2. Chromosome aberrations

There is a large body of evidence that base line frequencies of
structural and numerical chromosome aberrations increase with
age in peripheral nucleated blood cells and buccal epithelia
(Bolognesi et al., 1997; Fenech, 1998; Jacobs et al., 2012; Ramsey
et al., 1995; Thomas and Fenech, 2008), but also in hepatocytes
(Curtis and Crowley, 1963), vascular smooth muscle cells (Jones
and Ravid, 2004) and human brain cells (Faggioli et al., 2011;
Fischer et al., 2012). In liver and brain, aneuploidisation is thought
to be an orchestrated developmental process and not an indication
of chromosomal instability (Ricke and van Deursen, 2013). In blood
cells, the age-related increase in aneuploidy is thought to reflect
chromosomal instability. It is associated with decreased levels of
vitamins and increased levels of homo-cystein, suggesting that it is
a consequence of age-associated malnutrition and insufficient
folate intake (Fenech, 2007). A causal role of aneuploidy in
mammalian ageing is suggested by a study of mice with low levels
of the spindle assembly checkpoint protein BubR1, which develop
progressive aneuploidy along with a variety of progeroid features,
including short lifespan, cachectic dwarfism, lordokyphosis,
cataracts, loss of subcutaneous fat and impaired wound healing
(Baker et al., 2004). The latter two features may argue for a role of
aneuploidy in skin ageing, but the occurrence of chromosomal
instability in the ageing process of human fibroblasts is still
controversial. While human fibroblasts subjected to replicative
senescence in vitro exhibit increased chromosomal instability
associated with de-methylation of satellite DNA (Suzuki et al.,
2002), centrosome aberrations (Ohshima, 2012), and a decline in
rapid DSB repair pathways (Seluanov et al., 2004), numerical and
structural chromosomal abnormalities were rare (Figueroa et al.,
2000). Furthermore, since dermal fibroblasts only rarely proliferate
in vivo, it remains to be seen whether chromosomal instability
observed in replicative fibroblast senescence in vitro reflects the
situation in dermal fibroblasts in aged human skin. This said, the
site of skin may be of particular importance, as structural
chromosomal aberrations are long known to be induced by UV
light (Popescu et al., 1986).

2.1.3. Accumulation of oxidative DNA damage and DNA photo-

adducts

Results of more than 50 studies measuring the level of oxidative
damaged nuclear DNA in organs of animals at various ages provide
compelling evidence for ageing-associated accumulation of
oxidative damaged DNA in organs with limited cell proliferation,
such as liver, kidney, brain, heart, pancreas, and muscle (Moller
et al., 2010). There seems to be no conclusive evidence of
accumulation of oxidative damage in nuclear DNA of skin cells,
although skin is particularly exposed to extrinsic photo-oxidative
stress. It is well documented that mice defective in mechanisms
involved in the repair of oxidative DNA damage age faster and live
shorter (Hasty et al., 2003). However, it is still debated whether
this effect is due to the accumulation of DNA damage per se or other
effects such as persistent transcription blocking (Diderich et al.,
2011; Garinis et al., 2009; Lans and Hoeijmakers, 2012). In DNA
repair defective mice the level of oxidative DNA lesions (which is
marginal to start with) is not enhanced and does not increase with
age, suggesting that factors other than DNA damage (e.g. cellular
responses to DNA damage) are involved in ageing process of these
animals (Maslov et al., 2013). Photo-oxidative stress is well
documented to play an established role in ageing-associated
attrition of mitochondrial DNA (Krutmann and Schroeder, 2009)
and protein oxidation in skin fibroblasts (Sander et al., 2002).
Nevertheless conclusive evidence of accumulation of oxidative
damage in nuclear DNA of dermal fibroblasts or other skin cells is
still elusive.

2.1.4. Decline or altered usage of DNA repair systems

Nucleotide excision repair (NER) is the pathway that removes
adducts and intra-strand crosslinks from DNA. Multiple mutations
in NER genes result in dramatically accelerated ageing phenotypes
in mouse and man (Hoeijmakers, 2009). The extent of repair
deficiency and the acceleration of specific progeroid symptoms
including the skin are closely correlated, and these effects are only
seen for the part of the NER machinery that is involved in
transcription-coupled repair and protects from cytotoxic as well as
cytostatic effects of DNA damage (Diderich et al., 2011). NER
capacity is subjected to circadian oscillation (Gaddameedhi et al.,
2011) (see Section 2.11) and declines with increasing age in
various cells and tissues (Garm et al., 2013; Gorbunova et al., 2007).
NER plays a major role in the defence of skin against photo-stress
as it removes the major photoproducts cyclobutane pyrimidine
dimers (CPD) and 6-4 pyrimidine-pyrimidone photoproducts (6-
4PP) from DNA (Moriwaki and Takahashi, 2008). Several studies
show that in the epidermis the capacity to remove CPDs and 6-4PPs
goes down with increasing donor age (Yamada et al., 2006). In
contrast, in dermal fibroblasts, overall NER activity declines with
donor age but the ability to remove CPDs and 6-4PPs stays the
same. Gene expression studies suggest that only NER-components
acting subsequent to the damage excision step are affected by age
(Takahashi et al., 2005).

Base excision repair (BER) is the major pathway repairing
oxidised DNA bases, most notably 8-oxoguanine and 7,8-dihydro-
8-oxoadenine, both induced in skin cells by solar light (Moriwaki
and Takahashi, 2008). BER is the major repair mechanism for
oxidative damage also of mtDNA, which increases with age in
various tissues including dermal fibroblast suggesting that
mitochondrial BER possibly becomes insufficient during ageing
(Druzhyna et al., 2008). Nuclear BER also undergoes age-related
changes in various mouse tissues and cell models other than skin
(Gorbunova et al., 2007). It is not known whether it declines in skin
cells with increasing chronological donor age. However, there are
several reports on an acute loss of function of various components
of the BER machinery following exposure of dermal fibroblasts to
ultraviolet light or oxidising substances, which could indicate a
maladaptive response contributing to extrinsic skin ageing
(Moriwaki and Takahashi, 2008).

DNA mismatch repair (MMR) removes miss-paired bases
resulting from replication errors, recombination between imper-
fectly matched sequences and deamination of 5-methyl-cytosine.
MMR is thought to also play a role in the repair of oxidative DNA
damage (Skinner and Turker, 2005). MMR mutations in tumours
are associated with a substantial destabilisation of microsatellites
(Karran, 1996). Although humans defective in MMR have no
progeroid phenotype (Hsieh and Yamane, 2008), microsatellite
instability increases with ageing in human peripheral blood cells
(Neri et al., 2005) and T-lymphocytes (Krichevsky et al., 2004),
suggesting that a decline in MMR could be involved in the ageing
process of these proliferating cells. It is not known whether MMR
also declines during in vivo ageing in other, mostly non-
proliferating human cell types, such as the dermal fibroblast.

DNA inter-strand crosslinks (ICL) are repaired by a group of
proteins that belong to the complementation group of Fanconi
anaemia (FA). FA is considered a segmental progeroid syndrome of
ageing-associated progressive kidney failure. In mice, deletion of
various ICL-repair genes provokes genome instability and acceler-
ated ageing in various organs (Lans and Hoeijmakers, 2012).
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However, these segmental progeroid phenotypes do not encom-
pass accelerated skin ageing, and in human skin evidence for age-
associated alterations of ICL-repair is lacking.

DSB repair is supported by two complementary systems: non-
homologous end joining (NHEJ) and homologous recombination
(HR). HR is a slow and precise mechanism that requires the sister
chromatid as a template, and, therefore, is restricted to the G2/M
phase and absent in fibroblasts locked in replicative senescence
(Mao et al., 2008). NHEJ is a fast mechanism that does not require a
template and appears to be the dominant DSB-repair mechanism
in mammals. DSBs situated between two direct repeats can also be
repaired by single-strand annealing (SSA), a highly mutagenic
mechanism that deletes the sequence between the repeats. Mouse
models and human syndromes deficient in various components of
NHEJ and SSA exhibit accelerated ageing, but it is unclear how
NHEJ-deficiency causes the progeroid phenotype (Lombard et al.,
2005). It has been observed that NHEJ becomes less efficient and
precise as human fibroblasts enter replicative senescence in vitro

(Seluanov et al., 2004). NHEJ activity is also reduced in brains of old
rats and Alzheimer disease patients, and declines in peripheral
human lymphocytes with donor age (Garm et al., 2013; Gorbunova
et al., 2007). It is not clear why NHEJ activity declines with age
since the expression of the major NHEJ genes does not change. One
possible explanation is that NHEJ complexes get increasingly
sequestered at irreparable DSB (Sedelnikova et al., 2004) or
damaged telomeres (Fumagalli et al., 2012). In male germ line cells
of drosophila, the age-related decline of NHEJ and SSA is matched
by a corresponding increase in HR (Preston et al., 2006), but it is
unclear whether this is also the case in aged mammalian cells.

2.2. Telomere shortening and irreparable DNA damage at telomeres

Most of the current mechanistic understanding of cellular
senescence of skin fibroblasts was obtained in cells having
acquired senescence due to telomere shortening induced by
continuous replication, i.e. replicative senescence (Hayflick, 1980;
Hayflick and Moorhead, 1961). The same endpoint is also reached
at by activation of ras oncogene associated with the accumulation
of p53 and p16INK4a (oncogene-induced premature senescence)
(Serrano et al., 1997), which is considered a powerful tumour
suppressor mechanism (Bartek et al., 2007; Ramsey and Sharpless,
2006). A different type of cellular senescence can be induced in
human diploid fibroblasts by oxidative stress or suboptimal cell
culture conditions (i.e. stress induced premature senescence, SIPS),
which is independent of telomere shortening and has a different
proteomic profile (Dierick et al., 2002; Toussaint et al., 2002, 2000).
Replicative senescence may not be a valid model for fibroblast
ageing in vivo, since fibroblasts rarely proliferate and age-
dependent telomere loss as measured in skin from different-age
donors is minimal (Krunic et al., 2009 and references therein). In
line with that, the replicative lifespan of skin fibroblasts analysed
ex vivo does not correlate with chronological age, morbidity or
mortality of the donor (Cristofalo et al., 1998; Maier et al., 2007).
Furthermore, damage responses associated with telomere short-
ening were found in mitotic but not in post mitotic tissue of aged
primates (Jeyapalan et al., 2007). Given that the dermal fibroblast
is mostly a post mitotic cell, one may assume that replicative
telomere shortening per se does not play role in dermal fibroblast
ageing. However, this does not altogether exclude a role of
telomere damage in extrinsic skin ageing. Extrinsic DNA strand
breaks inflicted at the telomeres of dermal fibroblasts may be
irreparable, providing a persistent DNA damage signal that induces
cell cycle arrest in a similar manner as telomere shortening. While
described for ionising radiation (Fumagalli et al., 2012), similar
UV-dependent effects have yet to be shown. It is suggested
that telomeres could be particularly susceptible to oxidative
stress-induced damage (Gilchrest et al., 2009), which is repaired
only slowly (Fumagalli et al., 2012; Von Zglinicki, 2003; von
Zglinicki et al., 2005). Thus it was reported that deficiency in the
glyoxylase Nth1 involved in repair of oxidative DNA lesions
enhances telomere fragility in mice (Vallabhaneni et al., 2013).
Moreover DNA damage foci, which to some extent were co-
localised with telomeres, increased in the nuclei of dermal
fibroblasts in aged primate skin (Herbig et al., 2006). These
findings suggest that cellular senescence induced by DNA stress
could be due to the persistence of irreparable damage in telomeric
DNA (Gilchrest et al., 2009). Interestingly, several features of DNA-
damage induced senescence have recently been observed to
accumulate in postmitotic neurons of old mice (Jurk et al., 2012).
This phenotype was aggravated in TERC�/� mice suggesting the
involvement of telomere dysfunction and to some extent
supporting the idea that DNA damage can persist in telomeric
DNA of non-replicative cells. Regarding skin, we could identify a
corresponding scenario only in the epidermis (keratinocytes) of
skin from elderly human donors (Leufke et al., 2013). Therefore, a
role for fibroblast senescence induced by telomere dysfunction or
persistent damage in telomeric DNA in human skin ageing still
remains to be shown. Irrespective of that, a self-amplifying cycle
between mitochondrial and telomeric DNA damage has been
proposed that possibly interlinks the dysfunction of the two
genomes during cellular senescence (Passos et al., 2007).

2.3. Disruption of post-transcriptional pre-mRNA processing

It has been known for some time that the expression patterns of
alternatively spliced mRNA and protein isoforms translated thereof
change during development and ageing. A long standing example is
alternative splicing of fibronectin, which is tightly controlled during
development (Chauhan et al., 2004), and significantly changes in
aged tissues of rat (Pagani et al., 1991) or during in vitro ageing of
primary cell cultures obtained from various human tissues
(Magnuson et al., 1991). Similar age-related changes of mRNA
splicing patterns have been observed for the five functionally
different isoforms of the gamma-subunit of the nicotinic acetylcho-
line receptor (Azim et al., 2012), and methionine synthase isoforms
in human cerebral cortex (Muratore et al., 2013). It has also been
postulated that t protein, a microtubule-associated protein involved
in ageing-associated neurodegenerative diseases including Alzhei-
mer’s disease, should be considered as a family of multiple isoforms
rising by alternative mRNA splicing (Avila et al., 2013). In addition,
alternative mRNA-splicing possibly also contributes to age-related
changes in IGF-1 function (Oberbauer, 2013).

Genome wide analyses of murine (Dillman et al., 2013) and
human brain (Mazin et al., 2013; Tollervey et al., 2011) tissues as
well as human peripheral blood leukocytes (Harries et al., 2011)
have revealed that many genes are affected by age-associated
alterations in pre-mRNA splicing. These changes follow discrete
patterns that can be linked to organ-specific gene functions and
corresponding changes in the expression profiles of splicing
factors. Age-related pre-mRNA splicing changes in human brain
are consistent with increased polypyrimidine tract binding protein
(PTB)-dependent splicing activity (Mazin et al., 2013; Tollervey
et al., 2011), and have a high potential to target the transcripts to
nonsense-mediated decay (Mazin et al., 2013). Interestingly,
similar global patterns of altered pre-mRNA splicing as observed
in aged brain are also present in brain affected by age-related
neurodegenerative diseases (Tollervey et al., 2011). In peripheral
human blood leukocytes, the most significant age-related disrup-
tions of splicing patterns were found in transcription control
pathways involved in proliferation control and stress response.
These changes were again associated with significant up-regulation
of genes involved in posttranscriptional procession of pre-mRNA
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(Harries et al., 2011). In summary, these findings suggest ubiquitous
ageing-related disruption of pre-mRNA splicing, which is associated
with expressional changes in the splicing machinery.

There is compelling evidence that altered pre-mRNA splicing
could also play a role in ageing of dermal fibroblasts. It has been
observed that replicative and stress-induced senescence of
mammary fibroblasts in culture is associated with the expression
of a novel splice variant of STAC, a gene encoding for a protein
involved in protein kinase C signalling via domains predicted to be
lacking in the senescence-associated splice variant (Hardy et al.,
2005). Moreover, alternative splicing of lamin A pre-mRNA is
possibly involved in skin ageing (McClintock et al., 2007; Takeuchi
and Runger, 2013). Most cases of the hereditary Hutchinson-
Gilford Progeria Syndrome (HGPS) are due to a silent mutation
(G608G) activating a cryptic splice site in exon 11 of the LMNA
gene (Goldman et al., 2004), which leads to an internal deletion of
150 base pairs and thus to the expression of an alternative form of
lamin A protein called progerin. Progerin not only lacks a
farnesylation site crucial for the appropriate distribution of lamin
A between nuclear lamina and nucleoplasm but also negatively
effects the nuclear architecture and epigenetic chromatin control
(Shumaker et al., 2006), and induces accumulation of irreparable
oxidative DNA damage (Richards et al., 2011). In mice heterozy-
gous for the HGPS-associated LMNA mutation, expression levels of
progerin relative to wild type lamin A are directly correlated to life
span abbreviation (Lopez-Mejia et al., 2011). The cellular HGPR
phenotype can be rescued or ameliorated by antioxidants
(Richards et al., 2011) and drugs interfering with protein
farnesylation or histone acetylation (Columbaro et al., 2005).
The onset of accelerated ageing in HPGS mouse models can be
delayed by systemic application of antisense oligonucleotides
(Osorio et al., 2011), farnesyl-transferase inhibitors (Yang et al.,
2006), or combinations of statins and amino-bisphosphonates
(Varela et al., 2008). Extremely low level usage of the cryptic splice
site in absence of any mutation is found in foreskin fibroblasts from
old normal human donors, which also exhibit a HGPS-like cellular
phenotype (Scaffidi and Misteli, 2006). In aged human skin
progerin accumulates in a subset of dermal fibroblasts and a
few terminally differentiated keratinocytes (McClintock et al.,
2007). Accumulation of progerin due to aberrant splice site usage
and alternative splicing of LMNA mRNA in dermal fibroblasts is
enhanced by irradiation with long wavelength UV light in vitro, in
particular in fibroblasts subjected to extended culture splitting
(Takeuchi and Runger, 2013). In line with this observation,
production of progerin in normal human fibroblasts goes hand
in hand with progressive telomere shortening in the course of
replicative senescence (Cao et al., 2011). Therefore, it may not play
a role for fibroblast ageing in situ, as fibroblasts rarely proliferate
and do not exhibit age-related telomere shortening in vivo (see
Section 2.2). In summary, the available data suggest (i) that
aberrant splicing of LMNA pre-mRNA could play a role in photo-
ageing of the skin, (ii) that other pre-mRNAs could be subjected to
aberrant splicing in aged fibroblasts as well, and (iii) that genes and
mechanisms involved in posttranscriptional procession of pre-
mRNA could be important targets of extrinsic ageing.

2.4. Epigenetic alterations

Fibroblasts subjected to replicative senescence in vitro exhibit a
loss of ‘‘open’’ regulatory genome regions (euchromatin) in
promoters and enhancers of active genes, while the accessibility
of gene poor, heterochromatic regions increases, which is
accompanied by activation of major retrotransposon classes
(ALU, SVA, L1) and enhanced transcription of microsatellites (De
Cecco et al., 2013). It is therefore conceivable that activation of
retrotransposons could contribute to age-related increases in DSB
and chromosome instability. However, it is not known whether
these effects also occur when fibroblasts age in situ. UVA- and UVB-
exposure of keratinocytes in vitro induces hypermethylation and
histone modifications that play a role in silencing of tumour
suppressor genes (Cip1/p21/p16INK4a) relevant for photo-carcino-
genesis (Chen et al., 2012; Katiyar et al., 2012). DNA hyper-
methylation of the CDKN2A/B locus was also observed in dermal
fibroblasts from old donors (Koch et al., 2013). These alterations
are potentially interlinked with repression/derepression of the
polycomb complex that plays a crucial role in skin development,
skin regeneration, and skin carcinogenesis (Zhang et al., 2012).
Genome-wide analysis of DNA methylation patterns obtained in
epidermal suction blisters and whole skin punch biopsies from
sun-protected and sun-exposed skin areas of young and old
individuals indicates that chronic sun exposure (i.e. extrinsic
ageing) results in global DNA hypo-methylation, whereas intrinsic
ageing (of sun-protected skin) may cause widespread hyper-
methylation of CpG islands. These alterations were consistent with
a role of DNA methylation in the silencing of cell type specific genes
such as KRT5 (Gronniger et al., 2010). Interestingly, induced
pluripotent stem cells generated from human fibroblasts lose the
characteristics inherited from the parent cells and adapt to very
closely resemble embryonic stem cells, indicating that altered DNA
methylation signatures acquired during the ageing process are
reversible (Nishino et al., 2011). A recent comprehensive survey of
age-related changes in DNA methylation in 51 healthy tissues and
cell models as well as 6000 cancer samples of human and
chimpanzee origin (Horvath, 2013) revealed that DNA methylation
is closely correlated with chronological age and reliably reflects
heritable and cancer-related ageing acceleration. A set of 353 CpG
sites was derived from these studies, the methylation state of
which provides a reliable ‘‘epigenetic clock’’ indicating the
biological age of most healthy human tissues studied. However,
dermal fibroblasts formed an exception as they were poorly
calibrated to that DNA methylation clock, which probably reflects
opposing influences of chronological and extrinsic ageing on DNA
methylation in skin (Gronniger et al., 2010). In summary, the
available studies indicate that DNA methylation plays a role in
intrinsic and extrinsic ageing of fibroblasts, however the influence
of the two components of the ageing process on DNA methylation
is divergent and precludes an conclusive interpretation of global
pattern changes. Moreover, it remains unclear whether epigenetic
alterations are an epiphenomenon or play a causal role in
chronological and adaptation/maladaptation processes contribut-
ing to ageing of the dermal fibroblast.

2.5. Loss of proteostasis

The term proteostasis (protein homeostasis) encompasses
mechanisms that preserve the stability of correctly folded proteins
(i.e. chaperone mediated folding and unfolding) (Hartl et al., 2011),
proteolytic systems that remove damaged proteins (i.e. the
ubiquitin-proteasome system, the autophagy-lysosomal system
and secreted proteases controlling ECM composition) (Brennan
et al., 2003; Cuervo et al., 2005; Mizushima et al., 2008;
Rubinsztein et al., 2011; Tomaru et al., 2012), and mechanisms
that regulate the aggregation of misfolded proteins (van Ham et al.,
2010). Proteostasis is impaired in aged organisms and cells.
Experimental enhancement/impairment of proteostasis prolongs/
shortens lifespan and proper cell- and organ function (reviewed in
Lopez-Otin et al., 2013) and induces/prevents cellular senescence.
Regarding the ageing process of the dermal fibroblasts and its role
in skin ageing, progressive decline of proteasome function and
altered protease secretion play established roles, and it is probable
that decreased activity of autophagy is also involved. These three
topics will be addressed in more detail including the related topic
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of ageing-associated alterations of ECM-proteoglycane homeosta-
sis. We will not address the involvement of chaperone-mediated
protein folding, which may play a role in fibroblast ageing but there
are no data available.

2.5.1. Decline of the proteasome

Skin ageing is associated with the accumulation of oxidised
proteins, which need to be removed by the proteasome (Bulteau
et al., 2007) and/or chaperone-assisted autophagy (Cuervo et al.,
2005). Proteasome function in dermal fibroblasts decreases during
ageing as well as upon UV irradiation, which has been attributed to
a decreased expression or inactivation of proteasome subunits and
the accumulation of endogenous inhibitors (Bulteau et al., 2007).
Partial proteasome inhibition in young human fibroblasts triggers
accelerated senescence by a p53/Rb-dependent pathway (Chon-
drogianni et al., 2008), whereas stimulation of proteasome activity
by poleuropein (Katsiki et al., 2007) or quercetin (Chondrogianni
et al., 2010) increases their replicative life span in culture. These
findings suggest that the age-related decline in proteasome
activity plays a causal role in human fibroblast senescence and
possibly skin ageing. The age-related loss of proteasome activity in
the dermal fibroblast is causally interlinked with the induction of
MMP-1 (Catalgol et al., 2009) and a decrease of cell respiration
(Koziel et al., 2011). However, levels of proteasome activity appear
to be highly heterogeneous in fibroblasts of old donors (Koziel
et al., 2011). Moreover, in mouse NIH3T3-fibroblasts, expression of
the main proteasome subunits is subject to circadian regulation
(Menger et al., 2007). It cannot be excluded that this is also the case
in human skin, a consideration so far not taken into account in any
of the studies (see Section 2.11).

2.5.2. Decreased autophagy

Autophagy is considered as a protective factor in the chronic
degeneration of various organs (Cuervo et al., 2005; Gottlieb and
Mentzer, 2010; Jiang et al., 2010). Three different forms of
autophagy are discriminated – micro-autophagy, chaperone-
assisted autophagy, and macro-autophagy. Chaperone-assisted
autophagy clearing defective macromolecules (Cuervo et al., 2005)
and macro-autophagy removing dysfunctional mitochondria are
believed to be crucial in ageing (Lemasters, 2005; Yen and
Klionsky, 2008). In keeping with this notion, autophagy can be
pharmacologically stimulated to prolong the lifespan of various
model organisms (Madeo et al., 2010; Morselli et al., 2009). Some
of the life-prolonging effects of rapamycin are also attributed to a
release of the repressive effect of mTOR on autophagy (Rubinsztein
et al., 2011). Up regulation of autophagy is instrumental in
adaptive prolongation of lifespan in response to sub-lethal
mitochondrial dysfunction in Caenorhabditis elegans (Schiavi
et al., 2013). Up-regulation of autophagy is also thought to be
essential for the prolongation of lifespan by caloric reduction
(Bergamini et al., 2007). Similar to proteasome activity, autophagy
is subjected to circadian regulation in certain tissues (see Section
2.11), and decreases with age in many organs including brain,
heart, muscle and kidney (Rubinsztein et al., 2011). The age-related
decrease in autophagy seems to a large part due to posttransla-
tional mechanisms, such as acetylation/deacetylation of autop-
hagy proteins (Morselli et al., 2011). Moreover, in C. elegans (mito-
hormetic) pro-longevity responses to mild respiratory chain
dysfunction are dependent on a p53-mediated increase in
autophagy (Schiavi et al., 2013). If similarly accounted for dermal
fibroblasts, autophagy could be a factor that influences the ageing
process and thus may provide a potential intervention target.

2.5.3. Induction of secreted matrix metalloproteinases

UV radiation of the dermal fibroblast stimulates expression and
secretion of matrix metalloproteinases via upregulation of the
transcription factors AP-1 and NF-kappa B (Fisher et al., 1996).
Recent evidence suggests that in aged dermal fibroblasts enhanced
expression of cysteine-rich protein 61 (CCN1) also plays a role in
the up-regulation of matrix metalloproteinase secretion (Quan
et al., 2011). Enhanced expression of matrix metalloproteinase 1
(MMP1) and decreased expression of the endogenous inhibitor
TIMP-1 is the main cause for the degeneration of the extracellular
matrix in extrinsically aged skin (Brennan et al., 2003). AP-1/MMP1
up-regulation seems to be the common end stage of various
pathogenic pathways. Cutaneous AP-1/MMP1 up-regulation and
TIMP-1 down-regulation are triggered by retrograde signalling in
response to mtDNA mutations and electron transport chain (ETC)
dysfunction (Krutmann and Schroeder, 2009), and by the activa-
tion of the cytoplasmic arylhydrocarbon receptor (AHR) by tobacco
smoke or UV-induced conversion of tryptophan to the agonist 6-
formylindolo[3,2-b]carbazole (Fritsche et al., 2007; Ono et al.,
2013). The role of the dermal fibroblast in enhanced secretion of
MMPs is under debate, since dermal fibroblasts appear refractory
to AHR-signalling (Tigges et al., 2013), and many of the MMPs and
TIMPs playing a role in skin ageing are secreted by keratinocytes
rather than fibroblasts (Tandara and Mustoe, 2011). Degradation of
the extracellular matrix (ECM) by MMP1 is enhanced and possibly
autonomously perpetuated in aged skin, as collagenolytic frag-
ments inhibit type I pro-collagen synthesis (Varani et al., 2001).
Moreover, expression of the arylhydrocarbon receptor nuclear
translocator gene ARNT, the down-stream effector linking AHR to
AP-1, is subject to circadian regulation in mouse fibroblasts
(Menger et al., 2007), suggesting that the susceptibility to noxae
driving skin ageing and ECM degradation through the AHR/AP1/
MMP1-pathway could oscillate in a circadian manner. It should
finally be noted that enhanced secretion of metalloproteinases is a
feature of the altered secretory phenotype acquired in conjunction
with cellular senescence (see Section 2.7.4).

2.5.4. Down-regulation of hyaluronic acid synthases

Chronic UV irradiation not only induces breakdown of collagen
but also decreases other molecules in the dermal extracellular
matrix ECM, most notably hyaluronan, and alters the dermal
proteoglycan composition (Knott et al., 2009; Koshiishi et al., 1999;
Stern and Maibach, 2008). UV-induced loss of dermal hyaluronan
is attributed to the inhibition of hyaluronan synthesis by down-
regulation of hyaluronic acid synthases (HAS) 1, -2 or -3. Several
mechanisms have been identified that mediate UV-mediated
inhibition of HAS expression. Loss of transforming growth factor
beta (TGFb) signalling as a result of down-regulation of both TGFb
and TGFb receptors occurs in response to chronic UVB-irradiation
(Dai et al., 2007), which subsequently leads to a long-termed
decrease in HAS1 and HAS2 expression. The degradation of the
collagenous matrix is also directly linked to the loss of HA through
down-regulation of HAS2 in the dermal fibroblast by signalling of
by collagen fragments (Dai et al., 2007; Rock et al., 2011). Recently
it was discovered that loss of HA is counteracted by estrogen
through the release of epidermal growth factor from keratinocytes,
which in turn strongly induces HAS3 and versican, a HA binding
proteoglycan, in dermal fibroblasts (Rock et al., 2012). Estrogen
thus protects the dermal hyaluronan/versican matrix from UV-
induced rarefication, which may explain some of the gender-
specific differences in human skin and the notable acceleration of
skin ageing upon the onset of menopause (Makrantonaki et al.,
2010). It is not known whether estrogen or other gender-related
factors influence other mechanisms of fibroblast ageing. Little is
known about changes of proteoglycan composition during
extrinsic ageing. However, in some studies evidence for remodel-
ling of the proteoglycan matrix has been proposed (Knott et al.,
2009; Koshiishi et al., 1999; Rock et al., 2012). The changes in
proteoglycan matrix may be very important functionally, because
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certain proteoglycans such as decorin and biglycan affect structure
and function of collagen networks and others interact with
hyaluronan matrices.

2.6. Mitochondrial damage and dysfunction

2.6.1. Decline in respiratory capacity

Mitochondrial dysfunction and a decline in respiratory chain
activity is a hallmark of ageing in many tissues (Nunnari and
Suomalainen, 2012). On the other hand, reducing the expression of
electron transport chain (ETC) subunits has pro-longevity effects
from yeast to mammals (Copeland et al., 2009; Dell’agnello et al.,
2007; Dillin et al., 2002; Durieux et al., 2011; Kirchman et al., 1999;
Lapointe et al., 2009; Lee et al., 2002a; Rea et al., 2007). Thus, it is
not clear which role cell respiration plays in the ageing process of
the dermal fibroblast. Studies on foreskin fibroblasts subjected to
replicative ageing in vitro showed an age-related decrease in the
coupling of electron transport with phosphorylation, while the
resulting increase in proton leakage was fully compensated by
enhanced electron-transport activity (Hutter et al., 2004). This
finding was partially recapitulated in fibroblast of mixed tissue
provenience that were established from human donors of different
ages, i.e. had aged in vivo. These cells showed a progressive
decrease in respiration rate above a donor age of 40 years, and
progressive uncoupling of oxidative phosphorylation above a
donor age of 60 years, collectively suggesting that aerobic ATP-
production becomes inefficient with age (Greco et al., 2003). In
another study on dermal fibroblasts presumably from sun-
protected skin areas, respiratory activity was not found signifi-
cantly different between young, middle-aged, and old healthy
donors. However, in the samples from old donors there was a
significant decrease in mitochondrial membrane potential, accom-
panied by a significant increase in ROS levels (Koziel et al., 2011).

2.6.2. Imbalanced ROS levels

One key player in the ageing process seems to be oxidative
stress, which is defined as the imbalance between the production
of reactive oxygen species (ROS) and their elimination. ROS
generation by redox systems inside mitochondria (ETC) and in the
outer cell membrane (NADP-oxidases, NOXs) is balanced by anti-
oxidative defence systems. The balance may be tipped as ETC
function becomes defective in the course of ageing in various
model organisms (Balaban et al., 2005). However, the mechanistic
link between mitochondrial ETC function, ROS levels and cell
ageing remains unclear. There is considerable evidence that
respiratory capacity and mitochondrial ROS-production are
independently modulated (Barja, 2007). For instance ROS derived
from the mitochondrial ECR are not relevant for oxidative
modifications of DNA in the mammalian cell nucleus (Hoffmann
et al., 2004), and enhanced mtDNA mutations leading to ETC
dysfunction do not affect ROS production (Trifunovic et al., 2005).
This said, mitochondrial ROS-levels are increased in dermal
fibroblasts from old donors (Koziel et al., 2011). The latter finding
was made using super-oxide sensitive fluorescent dyes that do not
allow for a clear distinction between intra-mitochondrial ROS
levels (related exclusively to ETC-function) and cytosolic ROS
levels (also influenced by extra-mitochondrial and extracellular
ROS-generating systems) (Zielonka and Kalyanaraman, 2010).
Therefore, it seems unclear whether the increase in ROS-levels
observed in dermal fibroblasts from old donors is related to
alterations of ETC-function observed in the same cells (Koziel et al.,
2011). Genetic screens suggest that ageing in certain mouse tissues
(heart, kidney, brain) is correlated to an altered balance of
dissipative gene networks involved in energy metabolism and
stabilising networks involved in anti-oxidative defence, prompting
the conclusion that contrary to the free radical theory of ageing
(Harman, 1956) it may not be the rate of ROS production but the
maintenance of stable ROS levels that plays a role in ageing (Brink
et al., 2009). The conserved existence of NADPH oxidases (NOXs),
which appear to be dedicated to the production of ROS, suggests
that ROS play a biological role when present at physiological
concentrations. The NOX family consists of the ‘classical’ NADPH
oxidases NOX1-NOX5 and the dual oxidases Duox1 and Duox2
(Bedard and Krause, 2007). Though presently still largely elusive,
the contribution of NOXs to ageing-associated increases in ROS
levels is probably underestimated (Krause, 2007) and largely
unclear. On the one hand decrease expression of Nox4 induced a
senescence-like state in human thyroid cells (Weyemi et al., 2012),
on the other hand increased expression of NOX 4 restricts the
replicative life span of endothelial cells (Lener et al., 2009).
Moreover, upregulation of matrix metalloproteinases in photoaged
skin depends on ROS produced by NOXs (Shin et al., 2008). Age-
related increases in ROS-levels could also be due to a reduction of
the anti-oxidative capacity, since it has been demonstrated that
glutathione and thioredoxin-1 systems are inactivated in dermal
and/or endothelial cells during ageing (Altschmied and Haendeler,
2009; Rhie et al., 2001a, 2001b). In summary, there are at least
three mechanisms that potentially affect the ROS balance in aged
tissues: (i) enhanced ROS leakage from dysfunctional mitochon-
drial ETCs, (ii) induction and/or enhanced activity of NOXs, and (iii)
inactivation of antioxidative systems. Currently, it is unclear to
what extent these mechanisms individually contribute to the
increased ROS levels observed in dermal fibroblasts from old
donors.

2.6.3. Accumulation of mtDNA mutations

In mice, enhanced mtDNA mutations produce an accelerated
ageing phenotype including the skin organ (Trifunovic et al., 2004).
Levels of mtDNA mutations in these mice are at least 10-fold higher
than in aged humans and their ageing-like features are shared with
several other premature ageing mouse models, where no mtDNA
mutations are involved, suggesting the ageing-like phenotype of the
mtDNA mutator mouse does not necessarily imply the involvement
of mtDNA mutations in natural mammalian ageing (Khrapko et al.,
2006). A recent study demonstrates that premature ageing observed
in the mutator mouse is probably due to stem cell dysfunction, since
mtDNA mutations induced at similar levels in postmitotic cells by
mutant mitochondrial helicase Twinkle did not induce a progeroid
phenotype in mice (Ahlqvist et al., 2012). Current belief holds that
mtDNA deletions are naturally acquired by faulty repair of damaged
mtDNA molecules (Krishnan et al., 2008) and the accumulation of
such acquired mtDNA mutations in aged tissues seems to be a
consequence of clonal expansions of single founder molecules rather
than on-going mutational events (Lane, 2012; Wiesner et al., 2006).
This mechanism seems to hold some relevance for extrinsic ageing of
the skin, where the persistence of UV radiation-induced mtDNA
deletions entail inadequate energy production, which triggers
retrograde mitochondrial signalling pathways that then transduce
functional and structural alterations to the skin (Krutmann and
Schroeder, 2009). This pathogenic cascade may even perpetuate
itself independently of UV exposure as ROS-leakage from the
defective ECR induces additional/further mtDNA damage (Krut-
mann and Schroeder, 2009). The rarely proliferating, long-lived cell
population of the dermal fibroblast seems to be a major target of the
above mtDNA-degenerative mechanisms, because it is less able to
eliminate macromolecular damage by cell shedding as it is done by,
e.g. the highly proliferative epidermal keratinocytes.

2.6.4. Altered mitochondrial biogenesis

It is a long-standing observation that mitochondrial content
increases in fibroblasts subjected to replicative senescence in
culture (Goldstein et al., 1984; Hayflick, 1980; Lee et al., 2002b).
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Mitochondrial mass and biogenesis is also increased in primary
cells retrieved from aged humans (Lezza et al., 2001). It is currently
believed that the increase in mitochondrial mass in senescent and
aged cells is due to retrograde triggering of a mito-biogenic stress
response by increased ROS-production, decreased ATP-synthesis
or persistent DNA damage signals caused by dysfunctional
mitochondria (Butow and Avadhani, 2004; Finley and Haigis,
2009) that are not properly removed because autophagy is down-
regulated (Yen and Klionsky, 2008). On the other hand senescence
induced in human fibroblasts by DNA damage is maintained
through an anterograde signalling loop in which p21 stimulates
mitochondrial ROS production in order to replenish DNA damage
foci and maintain ongoing DNA damage responses (Passos et al.,
2010). While stimulation of mito-biogenesis is detectable in
fibroblasts subjected to replicative or stress-induced senescence in
culture (Lee et al., 2002b) and also in some aged human tissues
(Gottlieb and Mentzer, 2010; Lezza et al., 2001), it is not clear
whether the proposed cycle is also activated during ageing of
human dermal fibroblasts in situ. It should also be noted that in vivo

ageing of human skeletal muscle (a cell system sharing many
similarities with the dermal fibroblast) encompasses the opposite
mechanism, namely an increasing deficiency in the activation of
mito-biogenic stress responses mediated by the mTOR pathway
and the a2-subunit of AMP-activated protein kinase (Li et al., 2012)
as well as by a switch to AMPK-independent regulation of mito-
biogenesis due to altered SIRT1-signalling leading to an pseudo-
hypoxic state encompassing imbalanced transcription of mito-
chondrial genes encoded in the nucleus and by mtDNA (Gomes
et al., 2013).

2.6.5. Altered mitochondrial fusion/fission equilibrium

Mitochondria are highly dynamic organelles that constantly
undergo fusion and fission events to adapt their shape and number
in order to preserve cellular homeostasis (Chan, 2012; Detmer and
Chan, 2007). Mitochondrial fusion and fission help maintaining
mtDNA integrity, regulate cellular redox status, cooperate in the
elimination of damaged mitochondria through autophagy (mito-
phagy) and are directly involved in the execution of the apoptotic
programme (Cho et al., 2010; Liesa et al., 2009). A number of age-
associated neurodegenerative diseases are ascribed to direct or
indirect alterations of the fusion/fission machinery (Chen and
Chan, 2009). The mitochondrial fusion/fission equilibrium has a
direct impact on life span in lower eukaryotes (Scheckhuber et al.,
2012, 2011; Westermann, 2010) and significant alterations of
mitochondrial dynamics are associated with cellular senescence of
human vascular endothelial cells (Jendrach et al., 2005). Age-
associated deceleration of mitochondrial fusion and fission is
thought to serve the adaptation to an increased load of
mitochondrial damage (Figge et al., 2013, 2012). The proteins
crucial for mitochondrial fusion and fission are highly conserved
and most certainly expressed in dermal fibroblasts, but their role in
fibroblasts ageing has not been investigated.

2.7. Cellular senescence

2.7.1. Definition of cellular senescence

Cellular senescence is a genetic programme that limits the
proliferation of cells. It is primarily activated by telomere
shortening (d’Adda di Fagagna et al., 2003) but also by non-
telomeric DNA damage and many other stressors (Campisi and
d’Adda di Fagagna, 2007). Senescence is characterised by an
irreversible cell cycle arrest triggered through pathways involving
p53, pRB, p16INK4A (d’Adda di Fagagna et al., 2003) and p21(CIP1)
(Herbig et al., 2004). The senescent phenotype encompasses the
expression of a specific b-galactosidase (Dimri et al., 1995),
enhanced hetero-chromatinisation (Kreiling et al., 2011; Narita
et al., 2003) and increased secretion of cytokines and other
biologically active proteins (Coppe et al., 2008). In diploid human
fibroblasts, cellular senescence can be induced by replicative
exhaustion (replicative senescence) (Hayflick, 1980; Hayflick and
Moorhead, 1961), leading to telomere shortening (Harley et al.,
1990) and the activation of p53/pRB pathways (d’Adda di Fagagna
et al., 2003). The same endpoint is also reached along the p53 and
p16INK4a pathway following activation of ras oncogene (oncogene-
induced premature senescence) (Serrano et al., 1997). Alternative-
ly, cellular senescence can be induced in culture by oxidative stress
(stress induced premature senescence, SIPS) (Toussaint et al.,
2000), which gives rise to a distinct phenotype (Dierick et al.,
2002). Senescent dermal fibroblasts accumulate in skin of ageing
baboons (Herbig et al., 2006). It has also been shown that p16INK4A

positive, non-proliferative cells accumulate in aged human dermis
suggesting that senescence of dermal fibroblasts is induced in vivo

even though the cells do not proliferate (Jeyapalan et al., 2007;
Ressler et al., 2006). Enhanced clearance of p16INK4A-positive
senescent cells has been demonstrated to protect progeroid mouse
models from ageing-associated disorders (Baker et al., 2011). Thus,
it is conceivable that accumulation of p16INK4A-positive, senescent
dermal fibroblasts plays a causal role in skin ageing, although an
aged skin phenotype was not among the disorders suppressed by
enhanced clearance of these cells in progeroid mice (Baker et al.,
2011). However, it was recently reported that the number of p16-
positive cells in the epidermis as well as in the dermis increase
with age. Actually, the authors not only established a correlation of
human familial longevity with fewer p16INK4a-positive skin cells
in situ, but also an association with fewer senescent cells after a
cellular stressor in vitro (Waaijer et al., 2012).

2.7.2. Heterochromatinisation and activation of transposons

In senescent fibroblasts there is an accumulation of distinct
heterochromatin structures designated senescence-associated
heterochromatin foci (SAHF). SAHF-formation in human fibro-
blasts undergoing replicative senescence in vitro is associated with
the recruitment of heterochromatin proteins to E2F-promoters and
the irreversible repression of the retinoblastoma (RB) pathways
leading to suppression of the numerous E2F-traget genes involved
in DNA replication and cell cycle progression, DNA damage repair,
apoptosis, differentiation and development (Bracken et al., 2004;
Narita et al., 2003). Moreover, it is associated with epigenetic
changes leading to gene silencing and the activation of retro-
transposons (De Cecco et al., 2013). Increased expression of
heterochromatin proteins was also observed in various tissues of
mice and baboons, but SAHP were not detectable. Age-related
increase in diffuse nuclear heterochromatin protein expression
was most prominent in post-mitotic tissues commonly thought to
be not susceptible to replicative senescence (Kreiling et al., 2011).
These findings suggest that during ageing, dermal fibroblasts could
undergo progressive hetero-chromatinisation leading to increased
DSB formation and DNA recombination due to the activation of
transposable elements.

2.7.3. DNA-damage foci and DNA-SCARS

In skin biopsies of baboons the percentage of fibroblasts
exhibiting gH2AX-positive DNA damage foci in their nuclei
increase exponentially with age (Herbig et al., 2006). These
persistent DNA damage foci are thought to be an indicator of
cellular senescence. They are either co-localised with telomeric
DNA indicating telomere dysfunction (Herbig et al., 2006) or with
PML nuclear bodies delineating nuclear structures that sustain
damage-induced senescence growth arrest and inflammatory
cytokine secretion (DNA SCARS). DNA SCARS are thought to be
the transcription factories where the genes providing the SASP are
transcribed (Rodier et al., 2011). DNA SCARS are associated with
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senescence of fibroblast induced by ionising radiation in vitro.
Senescence-associated formation of gH2AX-positive DNA damage
foci and hetero-chromatinisation are mutually exclusive, since
numerous studies have shown that hetero-chromatin is refractory
to H2AX phosphorylation (Cann and Dellaire, 2011).

2.7.4. Senescence associated secretory phenotypes

Enhanced secretion of cytokines and other biologically active
proteins by senescent cells is termed a senescence-associated
secretory phenotype (SASP). SASP enables senescent cells to
modulate the tissue microenvironment (Parrinello et al., 2005). It
can promote tumour progression and inflammation (Coppe et al.,
2010). In hepatocyte and fibroblast cell lines, the onset of
replicative senescence is regulated by extracellular growth factors
also included in SASP suggesting auto-/paracrine feedback loops
(Micutkova et al., 2011; Nelson et al., 2012). Moreover, there is
evidence that the AHR could play a role in the induction of SASP
through the activation of the EGFR-ligands amphiregulin and
epiregulin (Choi et al., 2006; John et al., 2013). Skin fibroblasts
subjected to replicative or stress-induced ageing in vitro acquire a
SASP (Coppe et al., 2010). However, it is questionable whether this
holds also true for senescent dermal fibroblasts accumulating in
the skin of ageing primates (Herbig et al., 2006) and humans (Dimri
et al., 1995). Dermal fibroblasts aged in vivo are characterised by
enhanced secretion of cysteine-rich, angiogenic inducer protein 61
(CYR61), also known as CCN1 (Quan et al., 2011). CCN1 is a protein
that stimulates the secretion of pro-inflammatory cytokines and
MMPs and induces cellular senescence. Enhanced CCN1 expression
controls fibrosis in wound healing (Jun and Lau, 2010a,b). In aged
dermal fibroblasts CCN1 is believed to contribute to the acquisition
and maintenance of the senescent cell state and to promote
reduced production and increased degradation of collagen (Quan
et al., 2011). Holistic secretome analyses demonstrate that already
in the non-senescent state dermal fibroblasts secrete more than
1000 individual proteins including transporters, enzymes, pepti-
dases, growth factors and integrines (Boraldi et al., 2003b; Won
et al., 2012). Therefore, in fibroblasts, age-related changes in
amount and composition of secreted proteins might reflect the
switch from one secretory programme to another, rather than
acquirement of a secretory phenotype de novo. This said, so far
there are no systematic studies available regarding alterations of
the secreted proteome of dermal fibroblasts during in situ ageing.

2.8. Altered intercellular communication

2.8.1. Epidermal growth factor (EGF) signalling

Foreskin fibroblasts subjected to replicative senescence in
culture become refractory to EGF receptor (EGFR)-mediated
paracrine growth impulses due to down-regulation of the EGFR
and up-regulation of tyrosine phosphatases (SHP-1 and PTPN6)
(Shiraha et al., 2000; Tran et al., 2003). Acquired EGF unrespon-
siveness involves down-regulation of caveolin- and clathrin-
mediated endocytosis (Park et al., 2002, 2001). EGF-response is
attenuated by caveolin overexpression in juvenile fibroblasts and
restored by caveolin knock down in senescent fibroblasts (Park
et al., 2002). In addition, EGFR-mediated expression of aquaporin-3
is involved in human skin fibroblast migration (Cao et al., 2006).

In keratinocytes, UVA/B irradiation activates EGFR, which plays
a dominant role in c-jun-mediated activation of AP-1 leading to
enhanced expression of MMPs (Wan et al., 2001). On the other
hand, EGFR-dependent activation by oxidative stress may play a
protective role in the adaptation of keratinocytes to UV-light, since
it is known to enhance cell survival (Wang et al., 2000). Paracrine
epidermal/dermal crosstalk of EGF-signalling appears to play a
major adaptive role in extrinsic ageing, as estrogen-mediated
release of epidermal growth factor from keratinocytes protects the
dermal hyaluronan/versican matrix. Thus, EGF-signalling input
into dermal fibroblasts acts protective in remodelling processes of
the dermal extracellular matrix during extrinsic ageing (Rock et al.,
2012) and loss of EGF-responsiveness of the dermal fibroblasts
possibly promotes extrinsic skin ageing processes.

2.8.2. AHR-signalling

Skin ageing promoted by polycyclic aromatic hydrocarbons
(PAH) is targeted at, and transduced by, the aryl hydrocarbon
receptor (AHR) (Morita et al., 2009). All skin cells express the AHR.
In keratinocytes, the AHR is activated by UVB irradiation and
subsequent signalling events are critically involved in photo
carcinogenesis and UVB-induced ageing. Non-genomic AHR
signalling in UVB-irradiated keratinocytes induces cyclo-oxige-
nase 2 and suppresses apoptosis, thereby contributing to the
development of skin cancer (Agostinis et al., 2007; Fritsche et al.,
2007). In addition, UVB-induced AHR activation in keratinocytes
causes increased mRNA and protein expression of MMP1, which
probably acts on proteins in the dermal ECM and thus contributes
to extrinsic ageing of the dermis in a paracrine manner. Whether
AHR – signalling plays a direct role in dermal fibroblasts ageing is
currently not known. Dermal fibroblasts express AHR molecules at
significant levels (Tigges et al., 2013), but stimulation of these cells
with established AHR agonists fails to elicit increased expression of
AHR-signature genes such as cytochrome P450, family 1, member
A1 (CYP1A1). On the other hand, the AHR in dermal fibroblasts has
recently been demonstrated to mediate stimulation of MMP1
expression by tobacco smoke (Ono et al., 2013).

2.9. Alterations of the cytoskeleton

The most obvious morphological changes that are associated
with replicative senescence of fibroblasts in vitro and recapitulated
to some extent in primary dermal fibroblasts isolated from donors
of advanced age encompass increases in cell surface and cell
volume, as well as changes in cell shape and mobility (reviewed in
Hwang et al., 2009). As these properties are to a large part
dependent on the function of the cytoskeleton, cytoskeletal
modifications are expected to occur during ageing of the dermal
fibroblast. Dermal fibroblasts from old donors are less plastic and
less mobile than those from young donors (Schulze et al., 2012). It
has been suggested that these alterations are due to structural
changes in intermediate filaments caused by an increased
expression of vimentin. Up-regulation of vimentin was observed
in dermal fibroblasts subjected to replicative ageing in vitro (Nishio
and Inoue, 2005). Conversely, enforced vimentin overexpression
induced a senescence-like phenotype (Nishio et al., 2001).
Vimentin was also the most prominent among 30 proteins
differentially expressed in HGPS fibroblasts as compared to normal
fibroblasts (Wang et al., 2012). However a similar increase in
vimentin has not been detected in primary dermal fibroblasts
isolated form old human donors (Boraldi et al., 2003a). It should
also be noted, that vimentin is highly susceptible to modification
by lipid peroxidation, glycoxidation and non-enzymatic glycation
(Baraibar and Friguet, 2013). Increased glycation of vimentin
expressed at normal levels has been observed in primary dermal
fibroblasts from donors of advanced age and associated with a loss
of contractile capacity of the cells (Kueper et al., 2007). The other
relevant cytoskeletal target molecule of ageing processes appears
to be actin. Actin content of dermal fibroblasts seems not to change
in the course of replicative senescence (Sprenger et al., 2010) or
differ between primary cells form old and young donors (Boraldi
et al., 2003a), whereas the status of actin filaments has been
reported to change during replicative senescence as well as during
in situ-ageing of human fibroblasts. However, the available studies
arrive at contradictory results and it remains unclear whether
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during ageing the actin filaments become thicker or thinner or just
redistributed within the cell (reviewed in Hwang et al., 2009).
More relevant seems an age-related change in actin dynamics
leading to an increase in the nuclear content of depolymerised
globular (G-)actin and an increased expression or activation of the
actin-depolymerising factor cofilin in senescent fibroblasts (Kwak
et al., 2004) and primary fibroblast from old humans (Boraldi et al.,
2003a; Chen et al., 2006). An altered nuclear content of G-actin
possibly plays a causal role in alterations of gene transcription
associated with age-associated decreases of stress resistance
(Vartiainen, 2008). Incidentally, the actin depolymerising factor
cofilin is activated in the skin by UV light, which possibly provides
a mechanistic link between age-related changes in nuclear G-actin
and extrinsic skin ageing promoted by exposure to sun light
(Hensbergen et al., 2005)

2.10. Adaptation/maladaptation to extrinsic stress

Sub-toxic doses of various harmful stressors extend lifespan in C.

elegans (Cypser et al., 2006; Johnson et al., 2002) and are proposed to
have beneficial effects against ageing and diseases in humans
(Calabrese et al., 2011; Martins et al., 2011; Wu et al., 2008).
Moreover, sub-lethal levels of nuclear or mitochondrial dysfunction
modulate ageing and life span of C. elegans in a bimodal manner.
High levels of transcription-blocking DNA-damage shorten lifespan/
accelerate ageing, whereas low levels increase lifespan/attenuate
ageing by a mechanisms involving growth retardation and
decreased IGF-signalling (Garinis et al., 2009). A similar bimodal
adaptive extension/maladaptive abbreviation of lifespan was
observed upon reduced expression of various nuclear-encoded
mitochondrial proteins, which play a crucial role in the maintenance
of the mitochondrial ETC (Rea et al., 2007; Ventura et al., 2005;
Ventura and Rea, 2007). These observations have given rise to the
concept of mito-hormesis (Tapia, 2006; Ventura et al., 2006), which
was later extended (Ristow and Schmeisser, 2011; Ristow and Zarse,
2010) to stipulate that several longevity-promoting interventions
including calorie restriction, physical exercise and mild suppression
of mitochondrial function converge on an adaptive activation of
mitochondrial oxygen consumption thereby promoting ROS forma-
tion, which induces downstream effects ultimately inducing
endogenous defence mechanisms culminating in increased stress
resistance and longevity. In C. elegans, the adaptive extension of
lifespan in response to cell respiratory dysfunctions depends on the
p53 homologue cep-1 (Torgovnick et al., 2010; Ventura et al., 2009).
Moreover, it involves genes playing a role in apoptosis and
autophagy (beclin and p53) and encompasses reduced lipid storage
and increased autophagy (Schiavi et al., 2013). These observations
conform to the yeast-derived concept that autophagy counteracts
ageing by removing defective mitochondria (Brink et al., 2009).
Recently, it has been shown that some of the phenotypic hallmarks
of UV-induced skin ageing can be suppressed by preconditioning
with mild heat via a HSP-70 mediated protective pathway (Matsuda
et al., 2013), which indicates that HSP-70 mediated adaptation/
maladaptation could play a general and crucial role in extrinsic skin
ageing and possibly provides an intervention target (Haarmann-
Stemmann et al., 2013). It remains to be investigated, whether these
effects are related to the activation of autophagy downstream of
mito-hormesis as demonstrated in C. elegans (Schiavi et al., 2013).

2.11. Disruption of circadian regulation, decrease of NAD+ and sirtuin

activity

Fibroblasts comprise a molecular circadian oscillator that
confers rhythmic diurnal expression to a large number of genes
(Menger et al., 2007). The local clockwork in skin and other
peripheral organs is under the general control of a light-sensitive
master pacemaker in the suprachiasmatic nucleus (Honma et al.,
2012) and additionally receives input from a variety of extrinsic
factors and cellular response systems including redox state (e.g. via

SIRT1 and NAD+/NADH sensing) (Asher et al., 2008, 2010; Chang
and Guarente, 2013; Nakahata et al., 2008, 2009; Peek et al., 2013;
Ramsey et al., 2009), energy levels (e.g. via AMPK) (Lamia et al.,
2009), DNA damage (Oklejewicz et al., 2008) and cellular stress
response systems (e.g. via heat shock factors) (Buhr et al., 2010;
Reinke et al., 2008; Saini et al., 2012). Circadian regulation has been
demonstrated for various pathways involved in the ageing process
of the dermal fibroblast. These encompass NER (Gaddameedhi
et al., 2011), autophagy (Ma et al., 2011), expression of proteasome
subunits and components of the AHR-pathway (Menger et al.,
2007), and anti-oxidative defence systems (Wilking et al., 2013).
Genetic or environmental perturbations of circadian regulation
induce a variety of pathologies that are also known to increase with
age (Kondratova and Kondratov, 2012). Moreover, mouse models
defective in specific clock genes have a shortened life span and
exhibit features of accelerated organ ageing (Fu et al., 2002;
Kondratov and Antoch, 2007; Kondratov et al., 2006; van der Horst
et al., 1999). In humans, disruption of circadian rhythm is
associated with an earlier onset of metabolic and cardiovascular
dysfunction (Maury et al., 2010; Rajaratnam and Arendt, 2001). Of
particular interest in this context is the link between circadian
regulation and SIRT1, which acts as a conserved, energy-sensitive
antiageing protein and mediates the beneficial effects of calorie
restriction (Guarente, 2013) by many pathways encompassing the
regulation of gene expression through histone deacetylation
(Satoh et al., 2013), direct of stimulation of autophagy proteins
(Morselli et al., 2010, 2011), adaptation of the retrograde mito-
biogenic response to mitochondrial dysfunction (Gomes et al.,
2013) and induction of hormetic responses through ROS-genera-
tion linked to the methylation of nicotinamide (Schmeisser et al.,
2013). In the core clock mechanism SIRT1 directly regulates the
stability of the major circadian regulator PER2 (Asher et al., 2008,
2010) and the actelyation status of BMAL1 and chromatin at
circadian promoters (Nakahata et al., 2008). Recently, it has been
shown that SIRT1 is also involved in the ageing-related decline of
clock function in the suprachiasmatic nucleus, which is mediated
by reduced levels of SIRT1 and NAD+ in aged animals (Chang and
Guarente, 2013). On the other hand, many of the stresses that
promote extrinsic ageing are subjected to circadian dynamics and
it seems conceivable that the adequate cellular response systems
need to be coordinated with the diurnal incidence of the stressors.
Along these lines it has been demonstrated that stress-adaption of
mitochondrial function and autophagy is regulated by the clock
gene Rev-Erb alpha in skeletal muscle (Woldt et al., 2013) and that
autophagy is coordinated with food intake by circadian regulation
in the liver through the transcription factor C/EBP beta (Ma et al.,
2012, 2011). In summary, these considerations suggest that (i) the
susceptibility of the dermal fibroblast to extrinsic ageing is likely to
depend on its position in the circadian cycle, (ii) noxae that
modulate ageing may act on the dermal fibroblast via their input
into the molecular clock, e.g. through SIRT1, and (iii) this regulation
possibly deteriorates with age leading to an age-associated decline
in stress resistance. However, so far, there are no data available
demonstrating such a connection in dermal fibroblasts.

2.12. Genome wide alterations in gene expression networks

2.12.1. Alterations of the mRNA transcriptome

Age-associated down regulation of genes associated with
electron transport chain activity and mitochondrial function is
currently considered a common signature of ageing, since it was
likewise observed in human skeletal muscle, kidney, skin and brain
(Glass et al., 2013; Rodwell et al., 2004; Zahn et al., 2006), as well as



J. Tigges et al. / Mechanisms of Ageing and Development 138 (2014) 26–4436
in corresponding organs of mouse (Zahn et al., 2007) and in insects
(Zahn et al., 2006). In contrast, genes associated with ECM
maintenance, cell progression and pre-mRNA processing exhibit
age-related up-regulation only in human muscle and kidney (Zahn
et al., 2006), while in human blood lymphocytes age-associated up
regulation of genes associated with pre-mRNA processing and
mRNA quality control appeared to be the most prominent age-
related alteration (Harries et al., 2011). In summary, these
observations support a model, in which mitochondrial dysfunction
and impaired energy metabolism are common features of aged
cells, while most of the other age-related systematic transcriptome
changes are consistent with an adaptation to that condition, which
may follow different strategies in different organs and cell types. In
genetic screens of homogenates of whole human skin biopsies
(epidermis + dermis from sun-protected sites/areas) the only gene
network that showed age-related changes independently of
gender was the wingless/int1 (WNT) pathway (Makrantonaki
et al., 2012). In seeming contradiction, another genetic screen of
foreskin fibroblasts from young and old human donors revealed a
total of 105 genes that changed their expression over 1.7-fold in an
ageing-related manner (43 down-regulated, 62 up-regulated), and
are involved in diverse cellular processes encompassing cell cycle
control, cytoskeletal changes, inflammatory response, signalling
and metabolism (Lener et al., 2006). It is puzzling that the gene
networks exhibiting ageing-related expression changes in human
skin had little to no connection with the common or tissue-specific
transcriptome signatures of ageing identified in human human
skeletal muscle, kidney, brain (Glass et al., 2013; Rodwell et al.,
2004; Zahn et al., 2006) or blood lymphocytes (Harries et al., 2011),
nor with the mechanisms known or believed to be involved in
bringing about the aged phenotype of the human dermal fibroblast
and the dermal stroma controlled by it. For instance, there was no
overlap with genes involved in ETC-function, mito-biogenesis,
retrograde stress response, AHR-signalling, extracellular matrix,
DNA-recombination, DNA-repair or DNA-damage response. This
discrepancy could be due to the fact that foreskin fibroblasts
analysed in the one of the two available studies (Lener et al., 2006)
are subjected to a different ageing process than dermal fibroblasts,
whereas differences observed in whole skin biopsies analysed in
the other study (Makrantonaki et al., 2012) were possibly related
to skin cell types other than dermal fibroblasts, e.g. epidermal
keratinocytes which in intact skin exceed the dermal fibroblasts by
number significantly. Finally, it is also conceivable that ageing of
the dermal fibroblast is to a large extent due to post-transcrip-
tional/-translational processes, as is, e.g. the case for ageing-related
decreases of autophagy in many organs (Morselli et al., 2011).

2.12.2. Alterations of micro-RNA expression

There is growing evidence that miRs are important regulatory
molecules deeply involved in the pleiotropic phenomena of ageing.
Genome-wide studies in a variety of model organisms show that
several miRs are differentially expressed during ageing and
regulate age-associated changes in gene expression (Inukai and
Slack, 2013). At least four different miR regulated pathways have
been found associated with human fibroblast senescence: A family
of 15 p53/E2F1-repressed miRs was identified that silence anti-
proliferative genes and delay replicative senescence, when over-
expressed in human embryonic fibroblast cells (Brosh et al., 2008).
A common set of four miRs from the miR 17–92 cluster was
identified that suppress p21 and are down regulated in human
dermal fibroblasts subjected to replicative senescence in vitro as
well as in human foreskin fibroblasts established from old donors
(Hackl et al., 2010). Two more studies have further addressed
potential roles of miRs in fibroblast senescence induced in culture.
One study demonstrated that UVB-induced senescence in cultured
human diploid fibroblast involving the p53/p21WAF1 and p16INK4a/
pRb pathways was accompanied by a significant regulation of five
miRs. One of these (miR-101) specifically targets the histone-lysine
N-methyltransferase EzH2. Overexpression of miR-101 and
experimental down-regulation of EzH2 both induced fibroblast
senescence, while experimental down-regulation of miR-101
failed to suppress UVB-induced senescence, suggesting redundant
mechanisms (Greussing et al., 2013). The other study demonstrat-
ed that replicative senescence of human diploid fibroblast in
culture was accompanied by up-regulation of miR-152 and miR-
181a. Overexpression of these two miRs was sufficient to induce
senescence. Interestingly, direct targets regulated by miR-152 and
miR-181a include the genes Itga5 and Col16a1, which play a role in
cell adhesion and composition of the extracellular matrix (Mancini
et al., 2012). In summary, at least four distinct miR-regulated
pathways appear to be involved in fibroblast senescence induced
by UV-radiation or replicative stress in vitro. At least one of these
(i.e. the miR 17–92 cluster) seems also involved in cellular
senescence of human foreskin fibroblasts subjected to ageing in

vivo. However, it remains to be determined which of these miR-
pathways is also regulated during in vivo ageing of human dermal
fibroblasts.

2.13. Proteome changes

About 22% of the cellular proteome of human foreskin dermal
fibroblast from two individuals (4 year old and 9 year old healthy
males) subjected to replicative senescence in culture exhibits
changes of >1.5 fold, which are mostly due to a moderate down-
regulation of proteins associated with transcription and RNA
metabolic processes and a pronounced up-regulation of lysosomal
proteins (Sprenger et al., 2010). The latter finding conforms to
older microscopic studies demonstrating an increase of lysosomes
in fibroblasts subjected to replicative ageing in vitro (Hwang et al.,
2009). A 2D electrophoresis study of the cellular proteome of
primary dermal fibroblasts isolated from sun-protected skin areas
of a few donors of various ages has identified a total of 38 proteins
that are differentially regulated (>3-fold changes) during ageing in

vivo. The differentially regulated proteome consisted of proteins
involved in protein degradation or -repair (mostly components of
the ubiquitin proteasome system), proteins involved in stress
response and anti-oxidative defence (heat shock proteins, super-
oxide dismutases, glutathione S-transferase P), and cytoskeletal
components and regulators (Boraldi et al., 2003a). Thus, the
changes of the cellular proteome of the dermal fibroblast
associated with replicative senescence in vitro and extrinsic
human skin ageing in vivo appear to differ notably from each
other. It has also been demonstrated that the proteomic changes
associated with replicative senescence are significantly different
from those associated with premature senescence induced in
fibroblasts by subtoxic doses of tert-butyhydroperoxide or ethanol
(Dierick et al., 2002). In addition there appear to exist phenotypic
differences between fibroblasts from different skin regions
(foreskin, abdomen, upper thigh). Moreover, primary human
dermal fibroblasts in primary culture are known to secrete a
complex protein mix (Boraldi et al., 2003b; Won et al., 2012). Given
the accumulation of senescent fibroblasts in skin of aged primates
(Herbig et al., 2006) and humans (Ressler et al., 2006) and the
acquisition of secretory phenotypes during cellular senescence
(Coppe et al., 2010; Quan et al., 2011), it is to be expected that the
secreted proteome of dermal fibroblasts will also change during
ageing. A screen of the secretome of human new born diploid
fibroblasts identified 26 extracellular proteins, the abundance of
which was significantly different in media from cells subjected to
replicative senescence in vitro. Interestingly, one of these was
insulin-like growth factor binding protein 6 (IGFBP-6). IGFBP-6
was down regulated upon replicative senescence and may be
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involved in supporting the senescent state through a negative
autocrine feedback loop, since IGFBP-6 overexpression increased
replicative lifespan, whereas experimental down regulation led to
premature senescence (Micutkova et al., 2011). However, it has not
yet been systematically investigated, whether similar alterations
of the proteome are also detectable in dermal fibroblasts retrieved
from old individuals.

3. Synopsis, conclusions and open questions

The dermal fibroblast is a long-lived, mostly non-proliferative
cell, which is targeted by a number of exogenous influences known
or believed to promote extrinsic skin ageing. It is assumed that
dermal fibroblasts integrate the chronic effects of such exogenous
ageing promoters and thus possibly provide an indicator system
for the individual state of extrinsic ageing processes. Table 1
provides in column 1 a catalogue of major age-associated
Table 1
Evidence obtained in dermal fibroblasts of phenotypic changes commonly related to a

Phenotypic changes commonly related

to ageing

Evidence in vitro senescence in

in culture

Persistent DNA damage, nuclear genome instability
53BP1/gH2AX foci Sa (Fumagalli et al., 2012) 

Chromosome instability, aneu-/polyploidy Rc (Ohshima, 2012;

Suzuki et al., 2002),

S (Popescu et al., 1986)

Transposon activation R (De Cecco et al., 2013) 

Decreased DNA repair capacity R (Seluanov et al., 2004) 

Oxidative DNA damage NEe (Moller et al., 2010) 

Telomere shortening R (Harley et al., 1990) 

DNA damage at telomeres S (Fumagalli et al., 2012) 

Altered pre-mRNA processing
Misssplicing of Lamin A (Progerin) (R, S) (Cao et al., 2011;

Takeuchi and Runger, 2013)

Altered splicing of other transcripts (R, S) (Magnuson et al., 1991) 

Altered regulation of splicing genes R (Hardy et al., 2005) 

Cellular senescence
SAbGal R (Dimri et al., 1995) 

p16INK4A R (d’Adda di Fagagna et al., 20

(Serrano et al., 1997)

p21 R (Herbig et al., 2004) S

(Passos et al., 2010)

SASP R, S (Coppe et al., 2010) 

SAHF R (Narita et al., 2003) 

HP1b, mH2A (diffuse) R (Kreiling et al., 2011) 

53BP1/gH2AX foci S (Fumagalli et al., 2012) 

DNA-SCARS R, S (Rodier et al., 2011) 

Epigenetic alterations
Histone modifications R (De Cecco et al., 2013) 

DNA methylation ND 

Disturbed Proteostasis
Chaperone dysfunction ND 

Decline of proteasome activity R, S (Bulteau et al., 2007;

Catalgol et al., 2009)

Decreased Autophagy ND 

Increased matrix metalloproteinase secretion S (Fisher et al., 1996) 

ECM Proteoglycane Remodelling ND 

Altered intercellular communication
EGF insensitivity R (Park et al., 2002, 2001;

Shiraha et al., 2000; Tran et al

Increased AHR-input S (Ono et al., 2013) 
phenotypic changes commonly observed in cells and tissues of
humans and other species. It is summarised, which of these
changes have so far been also observed in human dermal
fibroblasts undergoing spontaneous ageing processes in vivo

(columns 3 and 4) or subjected to ageing induced in culture by
actinic or oxidative stress or continuous replication (column 2). An
assessment of these findings with regard to the systematic of the
nine ubiquitous hallmarks of ageing (Lopez-Otin et al., 2013) is
summarised in Table 2. From these compilations it becomes clear
that dermal fibroblasts subjected to ageing in culture exhibit a
majority of the ubiquitous hallmarks of ageing (genome instability,
telomere attrition, epigenetic alterations, mitochondrial dysfunc-
tion, cellular senescence, altered intercellular communication, and
loss of proteostasis), while the rest of these hallmarks is not
applicable to the culture situation (stem cell exhaustion) or has not
yet been investigated (deregulated nutrient sensing/REDOX-
imbalance). However, several of the established phenotypic
geing.

duced Evidence ex vivo primary

cells from old humans

Evidence in vivo dermis of

old humans/primates

HGPSb (Richards et al., 2011) (Herbig et al., 2006;

Jeyapalan et al., 2007)

NDd ND

ND ND

(Takahashi et al., 2005) ND

NE (Moller et al., 2010) NE (Moller et al., 2010)

NE (Krunic et al., 2009;

Maier et al., 2007)

ND

ND (Herbig et al., 2006)

(Scaffidi and Misteli, 2006) (McClintock et al., 2007)

ND ND

ND ND

ND (Dimri et al., 1995)

03), Of ND (Ressler et al., 2006)

(Herbig et al., 2006;

Jeyapalan et al., 2007)

(Waaijer et al., 2012)

ND ND

(Quan et al., 2011) ND

ND NE (Kreiling et al., 2011)

ND (Kreiling et al., 2011)

HGPS (Richards et al., 2011) (Herbig et al., 2006)

ND ND

ND (Kreiling et al., 2011)

(Horvath, 2013;

Koch et al., 2013)

(Gronniger et al., 2010)

ND ND

NE (Koziel et al., 2011) ND

ND ND

ND (Brennan et al., 2003)

ND (Knott et al., 2009;

Koshiishi et al., 1999;

Rock et al., 2012)

., 2003)

ND ND

ND ND



Table 1 (Continued )

Phenotypic changes commonly related

to ageing

Evidence in vitro senescence induced

in culture

Evidence ex vivo primary

cells from old humans

Evidence in vivo dermis of

old humans/primates

Alterations of cell plascticity and the cytoskeleton
Decreased cell plasticity ND (Schulze et al., 2012) ND

Upregulation of vimentin R (Nishio and Inoue, 2005) NE (Boraldi et al., 2003a) ND

Enhanced glycation of vimentin ND (Kueper et al., 2007) ND

Increased nuclear content of G-actin and cofilin R (Kwak et al., 2004) (Boraldi et al., 2003a;

Chen et al., 2006).

ND

Circadian dysregulation ND ND ND

REDOX-Imbalance
Decreased NAD+/sirtuins ND ND ND

Increase ROS levels ND (Koziel et al., 2011) ND

Decreased antioxidants ND ND (Rhie et al., 2001a, 2001b)

Mitochondrial dysfunction
Oxphos-uncoupling R (Hutter et al., 2004) (Greco et al., 2003).

Increased respiration rate (Greco et al., 2003), NE

(Koziel et al., 2011)

mtDNA mutations S (Krutmann and Schroeder, 2009) gKS (Krutmann and

Schroeder, 2009)

hSES (Krutmann and

Schroeder, 2009)

Increased mitobiogenesis R (Goldstein et al., 1984; Hayflick, 1980;

Lee et al., 2002b)

ND ND

Altered fusion/fission equilibirum ND ND ND

Altered gene expression
mRNA ND (Lener et al., 2006) ND

miR R (Brosh et al., 2008; Hackl et al., 2010;

Mancini et al., 2012),

S (Greussing et al., 2013)

(Hackl et al., 2010) ND

a S = stress induced senescence in culture.
b HGPs = only observed in Hutchinson Gilford Progeroid Syndrome.
c R = replicative senescence in culture.
d ND = no data available.
e NE = negative evidence.
f O = oncogene induced senescence in culture.
g KS = observed in Kearns Sayre Syndrome.
h SES = observed in sun-exposed skin.

Table 2
Ubiquitous hallmarks of ageing apparent in fibroblast aged in culture or in the skin.

Hallmarka Ageing in

culture

Ageing in

the skin

Genome instability Yes Unclear

Telomere attrition Yes Some features

DNA damage at telomeres Yes Yes

Telomere shortening Yes No

Epigenetic alterations Yes Yes

Loss of proteostasis Some features Some features

Chaperone dysfunction Unknown Unknown

Decline in proteasome activity Yes No

Decreased autophagy Unknown Unknown

Increased protease secretion

and ECM-remodelling

Yes Yes

Deregulated nutrient sensing

(REDOX-imbalance)

Unknown Some features

Decreased NAD+ levels Unknown Unknown

Decreased sirtuin activity Unknown Unknown

Increased ROS levels Unknown Yes

Decreased antioxidant activity Unknown Yes

Disruption of circadian regulation Unknown Unknown

Mitochondrial dysfunction Yes Unclear

OXPHOS uncoupling Yes Yes

Alteration of cell respiration rate Yes Yes/no

mtDNA mutagenesis Yes Yes

Altered mitobiogenesis Yes Unknown

Altered fusion/fission equilibrium Unknown Unknown

Cellular senescence Yes Some features

Chronic DNA damage signalling Yes Yes

Heterochromatinisation Yes Yes

Increased protein secretion (SASP) Yes Unknown

Stem cell exhaustion Not applicable No

Altered intercellular communication Yes Unknown

EGF insensitivity Yes Unknown

Increased AHR-input Yes Unknown

Altered insulin/IGF-signalling Unknown Unknown

a According to Lopez-Otin et al. (2013).
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features of dermal fibroblasts aged in culture have not yet been
investigated in fibroblasts aged in situ or were not or only partially
detected in the available studies of skin biopsies or primary dermal
fibroblasts derived from old donors. Therefore the list of
established hallmarks of fibroblast ageing in situ is much shorter
encompassing just persistent telomere damage, epigenetic altera-
tions, loss of extracellular proteostasis, increased oxidative stress
and stress-induced cellular senescence. It is unclear whether
mitochondrial dysfunction, genome instability and altered inter-
cellular communication also play a role and it seems unlikely that
stem cell exhaustion and telomere shortening are involved in the in

situ ageing process of the dermal fibroblast. Given these
discrepancies, it must be doubted that the fullblown phenotype
of cellular senescence of dermal fibroblasts induced in culture is a
valid model for the extrinsic ageing process of dermal fibroblasts in

situ. However, this conclusion should be taken with a grain of salt
for the following reasons: (i) Several features clearly associated
with replicative or stress-induced senescence in vitro have not yet
been addressed in the available studies on skin biopsies or primary
fibroblasts from old donors (e.g. the secretory phenotype, or
alterations in mito-biogenesis, or the occurrence of DNA-SCARS).
(ii) A number of cellular dysfunctions known to play a role in
extrinsic ageing processes of other, comparable cell types and
organs, such as a decline in autophagy, a decrease in NAD+ levels
and sirtuin activity, a possible disruption of circadian regulation, or
alterations of the mitochondrial fusion/fission equilibrium have
not yet been studied at all in aged dermal fibroblasts. (iii) Several
features clearly associated with the ageing process of the dermal
fibroblast in vitro or in vivo such as alterations of cell plasticity,
cytoskeleton function and pre-mRNA processing have not yet been
recognised as ubiquitous hallmarks of ageing. (iv) It is not entirely
clear how UV-induced alterations of cell function are related to
alterations occurring in the course of extrinsic ageing in situ,
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because in most ex vivo studies of dermal fibroblasts retrieved form
old humans, a clear distinction between intrinsic and extrinsic
ageing based on the site of cell retrieval is lacking. Along the same
lines, primary fibroblasts from tissue compartments other than
dermis (e.g. foreskin or lung) appear to exhibit an ageing
phenotype that markedly differs from that of dermal fibroblasts.
Therefore such data should be excluded from synoptic interpreta-
tions. Given these numerous restrictions, it must be doubted that
the short list of established hallmarks of dermal fibroblasts ageing
in situ provided in Table 2 is complete. Despite the fact that dermal
fibroblasts have been a preferred model of ageing research for
more than five decades, there are still large gaps in our knowledge
about the ageing process of this cell type within its physiological
tissue environment.
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