## 3<sup>rd</sup> Lecture: Mitochondrial dysfunction

## **General part**

- Mitochondria structure
- Mitochondrial functions
- Mitochondrial protective mechanisms (UPR and chaperones, mitophagy, apoptosis)

## Experimental part on *C. elegans*

- Mitochondrial age-associated changes
- Mitochondrial stress control of longevity (genetic, RNAi and compounds mediated)

## Take home messages

- 1. Mitochondria are the cellular powerhouses
- 2. Mitochondria are highly dynamic organelles (altered dynamics is implicated in numerous diseases)
- 3. Different mechanisms surveil mitochondrial functionality: UPR<sup>mt</sup> and chaperones, mitophagy and apoptosis.
- 4. Mitochondria play an important role during aging (i.e. somatic mtDNA mutations, MRC dysfunction) progeroid phenotypes.
- 5. Human mitochondria-associated diseases (HMAD) are a clinically heterogeneous group of disorders due to a dysfunction of the MRC.
- 6. Surprisingly, mild mitochondrial dysfunction can result in life extension (in different species). This paradox has been extensively studied in the long-lived *Mit* mutants of the nematode *C. elegans*.
- 7. Mild mitochondrial stress, achieved through genetic or environmental interventions targeting MRC, promotes *C. elegans* healthy aging (mitochondrial hormesis).
- 8. Severe mitochondrial stress leads to different HMAD in human and to short lifespan or arrest development in *C. elegans* by modulating gene.